Analyse de l'air de l'atmosphère: sa résolution en deux fluides élastiques, l'un respirable, l'autre non-respirable.

Telle est donc à priori la constitution de notre atmosphère; elle doit être formée de la réunion de toutes les substances susceptibles de demeurer dans l'état aériforme au degré habituel de température & de pression que nous éprouvons. Ces fluides forment une masse de nature à peu près homogène, depuis la surface de la terre jusqu'à la plus grande hauteur à laquelle on soit encore parvenu, & dont la densité décroît en raison inverse des poids dont elle est chargée; mais comme je l'ai dit, il est possible que cette première couche soit recouverte d'une ou de plusieurs autres de fluides très-différens.
air atmospherique

Il nous reste maintenant à déterminer quel est le nombre & quelle est la nature des fluides élastiques qui composent cette couche inférieure que nous habitons; & c'est sur quoi l'expérience va nous éclairer. La Chimie moderne a fait à cet égard un grand pas; & les détails dans lesquels je vais entrer feront connoître 34que l'air de l'atmosphère est peut-être de toutes les substances de cet ordre, celle dont l'analyse est la plus exactement & la plus rigoureusement faite.
La Chimie présente en général deux moyens pour déterminer la nature des parties constituantes d'un corps, la composition & la décomposition. Lors, par exemple, que l'on a combiné ensemble de l'eau & de l'esprit-de-vin ou alkool, & que par le résultat de ce mêlange on a formé l'espèce de liqueur qui porte le nom d'eau-de-vie dans le commerce, on a droit d'en conclure que l'eau-de-vie est un composé d'alkool & d'eau: mais on peut arriver à la même conclusion par voie de décomposition, & en général on ne doit être pleinement satisfait en Chimie qu'autant qu'on a pu réunir ces deux genres de preuves.
On a cet avantage dans l'analyse de l'air de l'atmosphère; on peut le décomposer & le recomposer; & je me bornerai à rapporter ici les expériences les plus concluantes qui aient été faites à cet égard. Il n'en est presque aucunes qui ne me soient devenues propres, soit parce que je les ai faites le premier, soit parce que je les ai répétées sous un point de vue nouveau, sous celui d'analyser l'air de l'atmosphère.
35
J'ai pris, planche II, figure 14, un matras A de 36 pouces cubiques environ de capacité dont le col BCDE étoit très-long, & avoit six à sept lignes de grosseur intérieurement. Je l'ai courbé, comme on le voit représenté, planche IV, figure 2, de manière qu'il pût être placé dans un fourneau MMNN, tandis que l'extrêmité E de son col iroit s'engager sous la cloche FG, placée dans un bain de mercure RRSS. J'ai introduit dans ce matras quatre onces de mercure très-pur, puis en suçant avec un siphon que j'ai introduit sous la cloche FG, j'ai élevé le mercure jusqu'en LL: j'ai marqué soigneusement cette hauteur avec une bande de papier collé, & j'ai observé exactement le baromètre & le thermomètre.
Les choses ainsi préparées, j'ai allumé du feu dans le fourneau MMNN, & je l'ai entretenu presque continuellement pendant douze jours, de manière que le mercure fut échauffé presqu'au degré nécessaire pour le faire bouillir.
Il ne s'est rien passé de remarquable pendant tout le premier jour: le mercure quoique non bouillant, étoit dans un état d'évaporation continuelle; il tapissoit l'intérieur des vaisseaux de goutelettes, d'abord très-fines, qui alloient ensuite en augmentant, & qui, lorsqu'elles avoient acquis un certain volume, retomboient 36d'elles-mêmes au fond du vase, & se réunissoient au reste du mercure. Le second jour, j'ai commencé à voir nager sur la surface du mercure de petites parcelles rouges, qui, pendant quatre ou cinq jours ont augmenté en nombre & en volume, après quoi elles ont cessé de grossir & sont restées absolument dans le même état. Au bout de douze jours voyant que la calcination du mercure ne faisoit plus aucun progrès, j'ai éteint le feu & j'ai laissé refroidir les vaisseaux. Le volume de l'air contenu tant dans le matras que dans son col & sous la partie vuide de la cloche, réduit à une pression de 28 pouces & à 10 degrés du thermomètre, étoit avant l'opération de 50 pouces cubiques environ. Lorsque l'opération a été finie, ce même volume à pression & à température égale, ne s'est plus trouvé que de 42 à 43 pouces: il y avoit eu par conséquent une diminution de volume d'un sixième environ. D'un autre côté ayant rassemblé soigneusement les parcelles rouges qui s'étoient formées, & les ayant séparées autant qu'il étoit possible du mercure coulant dont elles étoient baignées, leur poids s'est trouvé de 45 grains.
J'ai été obligé de répéter plusieurs fois cette calcination du mercure en vaisseaux clos, parce qu'il est difficile, dans une seule & même expérience, 37de conserver l'air dans lequel on a opéré, & les molécules rouges ou chaux de mercure qui s'est formé. Il m'arrivera souvent de confondre ainsi, dans un même récit, le résultat de deux ou trois expériences de même genre.
L'air qui restoit après cette opération & qui avoit été réduit aux cinq sixièmes de son volume, par la calcination du mercure, n'étoit plus propre à la respiration ni à la combustion; car les animaux qu'on y introduisoit y périssoient en peu d'instans, & les lumières s'y éteignoient sur le champ, comme si on les eût plongées dans de l'eau.
D'un autre côté, j'ai pris les 45 grains de matière rouge qui s'étoit formée pendant l'opération; je les ai introduits dans une très-petite cornue de verre à laquelle étoit adapté un appareil propre à recevoir les produits liquides & aériformes qui pourroient se séparer: ayant allumé du feu dans le fourneau, j'ai observé qu'à mesure que la matière rouge étoit échauffée sa couleur augmentoit d'intensité. Lorsqu'ensuite la cornue a approché de l'incandescence, la matière rouge a commencé à perdre peu à peu de son volume, & en quelques minutes elle a entièrement disparu; en même temps il s'est condensé dans le petit récipient 41 grains 1/2 de mercure coulant, & il a passé sous la cloche 387 à 8 pouces cubiques d'un fluide élastique beaucoup plus propre que l'air de l'atmosphère à entretenir la combustion & la respiration des animaux.
Ayant fait passer une portion de cet air dans un tube de verre d'un pouce de diamètre & y ayant plongé une bougie, elle y répandoit un éclat éblouissant; le charbon au lieu de s'y consommer paisiblement comme dans l'air ordinaire, y brûloit avec flamme & une sorte de décrépitation, à la manière du phosphore, & avec une vivacité de lumière que les yeux avoient peine à supporter. Cet air que nous avons découvert presque en même temps, M. Priestley, M. Schéele & moi, a été nommé par le premier, air déphlogistiqué; par le second, air empiréal. Je lui avois d'abord donné le nom d'air éminemment respirable: depuis, on y a substitué celui d'air vital. Nous verrons bientôt ce qu'on doit penser de ces dénominations.
En réfléchissant sur les circonstances de cette expérience, on voit que le mercure en se calcinant absorbe la partie salubre & respirable de l'air, ou, pour parler d'une manière plus rigoureuse, la base de cette partie respirable; que la portion d'air qui reste est une espèce de mofète, incapable d'entretenir la combustion 39& la respiration: l'air de l'atmosphère est donc composé de deux fluides élastiques de nature différente & pour ainsi dire opposée.
Une preuve de cette importante vérité, c'est qu'en recombinant les deux fluides élastiques qu'on a ainsi obtenus séparément, c'est-à-dire, les 42 pouces cubiques de mofète, ou air non respirable, & les 8 pouces cubiques d'air respirable, on reforme de l'air, en tout semblable à celui de l'atmosphère, & qui est propre à peu près au même degré, à la combustion, à la calcination des métaux, & à la respiration des animaux.
Quoique cette expérience fournisse un moyen infiniment simple d'obtenir séparément les deux principaux fluides élastiques qui entrent dans la composition de notre atmosphère, elle ne nous donne pas des idées exactes sur la proportion de ces deux fluides. L'affinité du mercure pour la partie respirable de l'air, ou plutôt pour sa base, n'est pas assez grande pour qu'elle puisse vaincre entièrement les obstacles qui s'opposent à cette combinaison. Ces obstacles sont l'adhérence des deux fluides constitutifs de l'air de l'atmosphère & la force d'affinité qui unit la base de l'air vital au calorique: en conséquence la calcination du mercure finie, ou au moins portée aussi loin qu'elle 40peut l'être, dans une quantité d'air déterminée, il reste encore un peu d'air respirable combiné avec la mofète, & le mercure ne peut en séparer cette dernière portion. Je ferai voir dans la suite que la proportion d'air respirable & d'air non respirable qui entre dans la composition de l'air atmosphérique est dans le rapport de 27 à 73, au moins dans les climats que nous habitons: je discuterai en même temps les causes d'incertitude qui existent encore sur l'exactitude de cette proportion.
Puisqu'il y a décomposition de l'air dans la calcination du mercure, puisqu'il y a fixation & combinaison de la base de la partie respirable avec le mercure, il résulte des principes que j'ai précédemment exposés, qu'il doit y avoir dégagement de calorique & de lumière; & l'on ne sauroit douter que ce dégagement n'ait lieu en effet: mais deux causes empêchent qu'il ne soit rendu sensible dans l'expérience dont je viens de rendre compte. La première, parce que la calcination durant pendant plusieurs jours, le dégagement de chaleur & de lumière, réparti sur un aussi long intervalle de temps, est infiniment foible pour chaque instant en particulier: la seconde, parce que l'opération se faisant dans un fourneau & à l'aide du feu, la chaleur occasionnée par la calcination 41se confond avec celle du fourneau. Je pourrois ajouter que la partie respirable de l'air, ou plutôt sa base, en se combinant avec le mercure, n'abandonne pas la totalité du calorique qui lui étoit uni, qu'une partie demeure engagée dans la nouvelle combinaison; mais cette discussion & les preuves que je serois obligé de rapporter, ne seroient pas à leur place ici.
Il est au surplus aisé de rendre sensible le dégagement de la chaleur & de la lumière en opérant d'une manière plus prompte la décomposition de l'air. Le fer, qui a beaucoup plus d'affinité que le mercure avec la base de la partie respirable de l'air, en fournit un moyen. Tout le monde connoît aujourd'hui la belle expérience de M. Ingenhouz sur la combustion du fer. On prend un bout de fil de fer très-fin BC, planche IV, figure 17, tourné en spirale, on fixe l'une de ses extrêmités B, dans un bouchon de liége A, destiné à boucher la bouteille DEFG. On attache à l'autre extrêmité de ce fil de fer, un petit morceau d'amadoue C. Les choses ainsi disposées, on emplit avec de l'air dépouillé de sa partie non respirable, la bouteille DEFG. On allume l'amadoue C, puis on l'introduit promptement, ainsi que le fil de fer BC dans la bouteille, & on la bouche 42comme on le voit dans la figure que je viens de citer.
Aussi-tôt que l'amadoue est plongée dans l'air vital, elle commence à brûler avec un éclat éblouissant; elle communique l'inflammation au fer, qui brûle lui même en répandant de brillantes étincelles, lesquelles tombent au fond de la bouteille, en globules arrondis qui deviennent noirs en se refroidissant, & qui conservent un reste de brillant métallique. Le fer ainsi brûlé, est plus cassant & plus fragile, que ne le seroit le verre lui-même; il se réduit facilement en poudre & est encore attirable à l'aimant, moins cependant qu'il ne l'étoit avant sa combustion.
M. Ingenhouz n'a examiné ni ce qui arrivoit au fer, ni ce qui arrivoit à l'air dans cette opération, en sorte que je me suis trouvé obligé de la répéter avec des circonstances différentes & dans un appareil plus propre à répondre à mes vues.
J'ai rempli une cloche A, planche IV, fig. 3, de six pintes environ de capacité d'air pur, autrement dit, de la partie éminemment respirable de l'air. J'ai transporté, à l'aide d'un vase très-plat, cette cloche sur un bain de mercure contenu dans le bassin BC; après quoi j'ai séché soigneusement avec du papier gris la surface du mercure, 43tant dans l'intérieur qu'à l'extérieur de la cloche. Je me suis muni, d'un autre côté, d'une petite capsule de porcelaine D, plate & évasée, dans laquelle j'ai placé de petits coupeaux de fer tournés en spirale, & que j'ai arrangés de la manière qui m'a paru la plus favorable pour que la combustion se communiquât à toutes les parties. A l'extrêmité d'un de ces coupeaux, j'ai attaché un petit morceau d'amadoue, & j'y ai ajouté un fragment de phosphore, qui pesoit à peine un seizième de grain. J'ai introduit la capsule sous la cloche en soulevant un peu cette dernière. Je n'ignore pas que par cette manière de procéder, il se mêle une petite portion d'air commun avec l'air de la cloche; mais ce mêlange, qui est peu considérable lorsqu'on opère avec adresse, ne nuit point au succès de l'expérience.
Lorsque la capsule D est introduite sous la cloche, on succe une partie de l'air qu'elle contient, afin d'élever le mercure dans son intérieur jusqu'en EF; on se sert à cet effet d'un siphon GHI, qu'on passe par-dessous, & pour qu'il ne se remplisse pas de mercure, on tortille un petit morceau de papier à son extrêmité. Il y a un art pour élever ainsi en suçant le mercure sous la cloche: si on se contentoit d'aspirer l'air avec le poumon, on n'atteindroit qu'à une 44très-médiocre élévation, par exemple, d'un pouce ou d'un pouce & demi tout au plus, tandis que par l'action des muscles de la bouche on élève, sans se fatiguer, ou au moins sans risquer de s'incommoder, le mercure jusqu'à 6 à 7 pouces.
Après que tout a été ainsi préparé, on fait rougir au feu un fer recourbé MN, planche IV, figure 16, destiné à ces sortes d'expériences; on le passe par-dessous la cloche & avant qu'il ait eu le temps de se refroidir, on l'approche du petit morceau de phosphore contenu dans la capsule de porcelaine D: aussi-tôt le phosphore s'allume, il communique son inflammation à l'amadoue, & celle-ci la communique au fer. Quand les copeaux ont été bien arrangés, tout le fer brûle jusqu'au dernier atôme, en répandant une lumière blanche, brillante, & semblable à celle qu'on observe dans les étoiles d'artifice Chinois. La grande chaleur qui s'opère pendant cette combustion, liquéfie le fer, & il tombe en globules ronds de grosseur différente, dont le plus grand nombre reste dans la capsule, & dont quelques-uns sont lancés au dehors & nagent sur la surface du mercure.
Dans le premier instant de la combustion il y a une légère augmentation dans le volume de l'air, en raison de la dilatation occasionnée 45par la chaleur: mais bientôt une diminution rapide succède à la dilatation; le mercure remonte dans la cloche, & lorsque la quantité de fer est suffisante, & que l'air avec lequel on opère est bien pur, on parvient à l'absorber presqu'en entier.
Je dois avertir ici qu'à moins qu'on ne veuille faire des expériences de recherches, il vaut mieux ne brûler que des quantités médiocres de fer. Quand on veut pousser trop loin l'expérience & absorber presque tout l'air, la capsule D qui nage sur le mercure, se rapproche trop de la voûte de la cloche, & la grande chaleur jointe au refroidissement subit, occasionné par le contact du mercure, fait éclater le verre: le poids de la colonne de mercure qui vient à tomber rapidement, dès qu'il s'est fait une félure à la cloche, occasionne un flot qui fait jaillir une grande partie de ce fluide hors du bassin. Pour éviter ces inconvéniens & être sûr du succès de l'expérience, on ne doit guère brûler plus d'un gros & demi de fer sous une cloche de huit pintes de capacité. Cette cloche doit être forte, afin de résister au poids de mercure qu'elle est destinée à contenir.
Il n'est pas possible de déterminer à la fois dans cette expérience, le poids que le fer acquiert, & les changemens arrivés à l'air. Si c'est 46l'augmentation de poids du fer & son rapport avec l'absorption de l'air, dont on cherche à connoître la quantité, on doit avoir soin de marquer très-exactement sur la cloche, avec un trait de diamant, la hauteur du mercure avant & après l'expérience; on passe ensuite sous la cloche le siphon GH, planche IV, figure 3, garni d'un papier qui empêche qu'il ne s'emplisse de mercure. On met le pouce sur l'extrêmité G, & on rend l'air peu à peu en soulevant le pouce. Lorsque le mercure est descendu à son niveau, on enlève doucement la cloche; on détache de la capsule les globules de fer qui y sont contenus; on rassemble soigneusement ceux qui pourroient s'être éclaboussés & qui nagent sur le mercure, & on pèse le tout. Ce fer est dans l'état de ce que les anciens Chimistes ont nommé éthiops martial; il a une sorte de brillant métallique; il est très-cassant, très-friable, & se réduit en poudre sous le marteau & sous le pilon. Lorsque l'opération a bien réussi, avec 100 grains de fer on obtient 135 à 136 grains d'éthiops. On peut donc compter sur une augmentation de poids au moins de 35 livres par quintal.
Si l'on a donné à cette expérience toute l'attention qu'elle mérite, l'air se trouve diminué d'une quantité en poids exactement égale à celle dont le fer est augmenté. Si donc on a 47brûlé 100 grains de fer & que l'augmentation de poids que ce métal a acquise ait été de 35 grains, la diminution du volume de l'air est assez exactement de 70 pouces cubiques à raison d'un demi-grain par pouce cube. On verra dans la suite de ces Mémoires, que le poids de l'air vital est en effet, assez exactement, d'un demi-grain par pouce cube.
Je rappellerai ici une dernière fois que dans toutes les expériences de ce genre, on ne doit point oublier de ramener par le calcul le volume de l'air au commencement & à la fin de l'expérience à celui qu'on auroit eu à 10 degrés du thermomètre, & à une pression de 28 pouces: j'entrerai dans quelques détails sur la manière de faire ces corrections, à la fin de cet Ouvrage.
Si c'est sur la qualité de l'air restant dans la cloche, qu'on se propose de faire des expériences, on opère d'une manière un peu différente. On commence alors, après que la combustion est faite & que les vaisseaux sont refroidis, par retirer le fer & la capsule qui le contenoit en passant la main sous la cloche à travers le mercure: ensuite on introduit sous cette même cloche, de la potasse ou alkali caustique, dissous dans l'eau, du sulfure de potasse, ou telle autre substance qu'on juge à propos, pour examiner l'action qu'elles exercent 48sur l'air. Je reviendrai dans la suite sur ces moyens d'analyse de l'air, quand j'aurai fait connoître la nature de ces différentes substances, dont je ne parle qu'accidentellement dans ce moment. On finit par introduire sous cette même cloche, autant d'eau qu'il est nécessaire pour déplacer tout le mercure; après quoi on passe dessous un vaisseau ou espèce de capsule très-platte avec laquelle on la transporte dans l'appareil pneumato-chimique ordinaire à l'eau, où l'on opère plus en grand & avec plus de facilité.
Lorsqu'on a employé du fer très-doux & très-pur, & que la portion respirable de l'air dans lequel s'est faite la combustion, étoit exempte de tout mêlange d'air non respirable, l'air qui reste après la combustion, se trouve aussi pur qu'il l'étoit avant la combustion; mais il est rare que le fer ne contienne pas une petite quantité de matière charbonneuse: l'acier sur-tout en contient toujours. Il est de même extrêmement difficile d'obtenir la portion respirable de l'air parfaitement pure, elle est presque toujours mêlée d'une petite portion de la partie non respirable, mais cette espèce de mofète ne trouble en rien le résultat de l'expérience, & elle se retrouve à la fin en même quantité qu'au commencement.
49
J'ai annoncé qu'on pouvoit déterminer de deux manières la nature des parties constituantes de l'air de l'atmosphère; par voie de décomposition & par voie de composition. La calcination du mercure nous a fourni l'exemple de l'une & de l'autre, puisqu'après avoir enlevé à la partie respirable sa base par le mercure, nous la lui avons rendue pour reformer de l'air en tout semblable à celui de l'atmosphère. Mais on peut également opérer cette composition de l'air en empruntant de différens règnes les matériaux qui doivent le former. On verra dans la suite que lorsqu'on dissout des matières animales dans de l'acide nitrique, il se dégage une grande quantité d'un air qui éteint les lumières, qui est nuisible pour les animaux, & qui est en tout semblable à la partie non respirable de l'air de l'atmosphère. Si à 73 parties de ce fluide élastique on en ajoute 27 d'air éminemment respirable tiré du mercure, réduit en chaux rouge par la calcination, on forme un fluide élastique parfaitement semblable à celui de l'atmosphère & qui en a toutes les propriétés.
Il y a beaucoup d'autres moyens de séparer la partie respirable de l'air de la partie non respirable; mais je ne pourrois les exposer ici sans emprunter des notions, qui, dans 50l'ordre des connoissances, appartiennent aux Chapitres suivans. Les expériences d'ailleurs que j'ai rapportées, suffisent pour un Traité Elémentaire; & dans ces sortes de matières, le choix des preuves est plus important que leur nombre.
Je terminerai cet article en indiquant une propriété qu'a l'air de l'atmosphère & qu'ont en général tous les fluides élastiques ou gaz que nous connoissons; c'est celle de dissoudre l'eau. La quantité d'eau qu'un pied cube d'air de l'atmosphère peut dissoudre, est suivant les expériences de M. de Saussure, de 12 grains: d'autres fluides élastiques, tels que l'acide carbonique, paroissent en dissoudre davantage; mais on n'a point fait encore d'expériences exactes pour en déterminer la quantité. Cette eau que contiennent les fluides élastiques aériformes, donne lieu dans quelques expériences à des phénomènes particuliers qui méritent beaucoup d'attention, & qui ont souvent jetté les Chimistes dans de grandes erreurs.

Commentaires