Q est dense dans R ( La Propriété d’Archimède )

On a bien compris maintenant que Q = lR. Cependant, grâce `a la propriété d’Archimède, on montre que ces deux ensembles ne sont pas très différents :

Proposition : Q est dense dans lR : tout intervalle ]a, b[ non-vide de lR contient au moins un rationnel.

Preuve: Puisque b − a > 0, la propriété d’Archimède permet d’affirmer qu’il existe n ∈ N tel que
n > 1/(b − a). Posons alors m = E(na) : on a  m ≤ na < m + 1, donc
m/n≤ a < (m + 1)/n≤ m/n+ 1/n< a + (b − a) = b.
Le nombre rationnel (m + 1)/n appartient donc a ]a, b[.
Home » » Q est dense dans R ( La Propriété d’Archimède )

Membres